Genome analysis

FARAO: the flexible all-round annotation organizer

Rickard Hammaren¹,², Chandan Pal¹,³ and Johan Bengtsson-Palme¹,³,*

¹Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden, ²Science for Life Laboratory, Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 21 Solna, Stockholm, Sweden and ³Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on May 20, 2016; revised on July 21, 2016; accepted on July 22, 2016

Abstract

Summary: With decreasing costs of generating DNA sequence data, genome and metagenome projects have become accessible to a wider scientific community. However, to extract meaningful information and visualize the data remain challenging. We here introduce FARAO, a highly scalable software for organization, visualization and integration of annotation and read coverage data that can also combine output data from several bioinformatics tools. The capabilities of FARAO can greatly aid analyses of genomic and metagenomic datasets.

Availability and Implementation: FARAO is implemented in Perl and is supported under Unix-like operative systems, including Linux and macOS. The Perl source code is freely available for download under the MIT License from http://microbiology.se/software/farao/.

Contact: johan.bengtsson-palme@microbiology.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Rapid advancements in DNA sequencing technology have quickly shifted the bottleneck for biological knowledge generation from restricted availability of sequence data to limited ability to analyze and mine the datasets generated (Heather and Chain, 2016). Thus, the analysis of nucleotide sequences from recent genomics projects requires tools that cannot only handle massive amounts of sequence data, but can also filter it and present the most relevant information to the user in an efficient manner. In this process, visualization of DNA sequence data and its associated annotations is key. However, annotations are often generated using a range of tools and databases, each with its own output formats and restrictions (Oulas et al., 2015). Hence the ability to combine annotations from different sources is instrumental to form a complete picture of the sequences under scrutiny. Furthermore, with the advent of shotgun metagenomics, which can produce highly fragmented assemblies with thousands or even millions of contigs from a single sample (Bengtsson-Palme et al., 2014), scalability becomes an important issue to consider. Metagenomics and RNA sequencing also introduce the ability to quantify the abundance of contigs and features in the data based on read coverage, which therefore also becomes an important part to incorporate in analysis and visualization frameworks.

A multitude of tools for visualization of annotated sequence features exist, but most of them either cannot integrate annotation and read coverage data (e.g. Kumar et al., 2011; Lee et al., 2009; Pan et al., 2010; Wilkinson et al., 2002), focus mainly on visualizing coverage information (Carver et al., 2012; Wozniak et al., 2011), lack scalability beyond a few hundred sequences (Fiume et al., 2010), cannot efficiently filter the data to the needs of the user (Hou et al., 2010; Peterson et al., 2012), or pose restrictions on what tools and file formats that can be used for input of annotated features and/or coverage information (Milne et al., 2010; Okonechnikov et al., 2012). There also exist a range of web-based tools that can...
visualize high-throughput data, generally connected to automated pipelines for sequence annotation (e.g. Cantor et al., 2015; Meyer et al., 2008; Sharma et al., 2015). However, none of these tools present a scalable, multi-purpose framework for integrating annotation and coverage information from several different database sources into a database that can be queried at the request of the user.

Consequently, there is a need for highly flexible and adaptable software tools that can bridge disparate annotation and quantification approaches. Such a toolkit should be agnostic to what kind of bioinformatic tools that have been used to annotate sequences, and must be able to adapt to novel annotation utilities as they are introduced, for example by providing extension modules to the software that can be tapped into by users skilled in programming. Given the challenges associated with filtering the data, the software needs to be able to process it in a way that is scalable up to millions of sequences with hundreds of features each. Finally, it is desirable if the software can handle annotations produced by a range of bioinformatics tools; (iv) provide a flexible interface for writing custom parsers for virtually any format not supported out of the box.

2 Implementation

FARAO is a set of command-line tools implemented in Perl 5 and should be functional under any version of Unix or Linux, including macOS. It uses the DBI and DBD modules for MySQL compatibility, the PostScript-Simple module for EPS graphics creation, and the GD library for PNG image generation. None of these libraries are required to install FARAO and use its basic functionality, although installing them greatly extends the capabilities of the software.

FARAO consists of ten programs, each with specific functions for interacting with annotation and coverage data (Table 1). In addition, FARAO comes with a bundled set of parsers for various bioinformatics software (see the manual; Supplementary Item 1). The set of parsers can easily be expanded upon with additional parsers written by the user or downloaded from the library located at http://microbiology.se/software/farao/parsers. Detailed instructions on how to create custom parsers are available in the FARAO manual. The runtimes and memory requirements of FARAO are highly dependent on the use cases. For example, for a database consisting of 1.7 million contigs (encompassing 2.4 Gbp of sequence data) with annotations from 8 different sources, occupying 1.4 Gb of disk space, running a typical request for retrieving all annotations of a certain kind took 1 minute and 31 s, using 1.7 Gb of RAM. In contrast, looking up all annotations for a specific entry only took 15 s and used less than 32 Mb of RAM.

Table 1. Brief description of the FARAO command-line tools

<table>
<thead>
<tr>
<th>Name of tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setup_annotation_db</td>
<td>Creates a new FARAO database from a FASTA file, for annotation or coverage information</td>
</tr>
<tr>
<td>add_annotation</td>
<td>Adds annotations from a bioinformatics software to an annotation database</td>
</tr>
<tr>
<td>get_annotations</td>
<td>Queries an annotation database for information, e.g. entries matching reference proteins in a certain database with >90% identity</td>
</tr>
<tr>
<td>remove_annotations</td>
<td>Deletes specific annotation information from an annotation database</td>
</tr>
<tr>
<td>add_mapped_reads</td>
<td>Adds coverage information from a read mapping software to a coverage database</td>
</tr>
<tr>
<td>get_coverage</td>
<td>Queries a coverage database for information on mapped reads to each database sequence</td>
</tr>
<tr>
<td>remove_mapped_reads</td>
<td>Deletes coverage information for a specific library from a coverage database</td>
</tr>
<tr>
<td>estimate_coverage</td>
<td>Used to estimate the coverage of specific features from an annotation database, based on the information in a coverage database</td>
</tr>
<tr>
<td>annotation_db_to_mysql</td>
<td>Convert annotation databases to MySQL format</td>
</tr>
<tr>
<td>coverage_db_to_mysql</td>
<td>Convert coverage databases to MySQL format</td>
</tr>
</tbody>
</table>

3 Conclusions

We introduce FARAO, an annotation and read coverage visualization software that enables integration of annotation and coverage information, is highly scalable, can combine output data from several bioinformatics tools and produces high-quality EPS output for figures. In addition, FARAO eases annotation of genomes and metagenomes by enabling filtering of sequence data by the features they contain.

Acknowledgements

The authors would like to thank Dr. Anna Johnning, Dr. Fredrik Boulund and Dr. Carl-Fredrik Flach for valuable input on FARAO features and visualization.

Conflict of Interest: none declared.

References

